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Abstract. It is known that the marginal function is upper semi-continuous if
the maximand is upper semi-continuous, the feasible multifunction is upper semi-
continuous in the sense of Berge and it takes compact values. In this note we
give a sufficient condition to establish the upper semi-continuity of the marginal
function without compactness assumption. The result applied to the directional
differentiability of a marginal function with constant feasible set.
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1 Preliminaries

Let W and X be metric spaces which are called the parameter space and
the decision space respectively. Given a function f : W × X → R and a
multifunction F : W →→ X, define m : W → R := R ∪ {+∞} by

m(w) := sup
x∈F (w)

f(w, x).

The resulting function m is called a marginal-function. In the first part of this
note we are concerned with the upper semi-continuity of m. We recall two
kinds of upper semi-continuity of F .

DEFINITION 1.1 (Berge [1,3,4]) F : W →→ X 　 is upper semi-continuous at
w if for any open set V ∈ OX with F (w) ⊂ V , there exists a neighborhood U
of w such that

F (u) ⊂ V, for all u ∈ U.

DEFINITION 1.2 (Penot [12]) F : W →→ X 　 is graphically upper semi-
continuous at w if for any open set V ∈ OW×X with {w} × F (w) ⊂ V , there
exists a neighborhood U of w such that

{u} × F (u) ⊂ V , for all u ∈ U.
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Hence F is graphically upper semi-continuous at w if and only if the mul-
tifunction u →→ {u} × F (u) is upper semi-continuous at w.

If one assume graphical upper semi-continuity, one gets the following upper
semi-continuity result for m.

THEOREM 1.1 (Penot [12, Proposition 2.1]) If f is upper semi-continuous at
each point of {w} × F (w) and if F is graphically upper semi-continuous at w,
then m is upper semi-continuous at w.

Theorem 1.1 is mathematically favorable because it is simple and does not
require any superfluous assumption. However, practically, it has a drawback,
that is to say, the graphical upper semi-continuity is much more restrictive
than the upper semi-continuity in the sense of Berge. For example a constant-
valued multifunction may not be graphically upper semi-continuous.

On the other hand, when one works with the upper semi-continuity in the
sense of Berge, one usually assume an additional assumption such as compact-
ness of F to ensure the upper semi-continuity of m (see Corollary 2.1 below).
In the next section, we will give a condition which establishes the upper semi-
continuity of m in place of compactness of F . The result will be applied to
derive the directional differentiability of marginal function of constant feasible
multifunction in section 3.

There are many papers that deal with the directional derivative of marginal
functions [2, 5, 6, 7, 8, 9, 10, 11, 14, 15]. In these papers, the directional
differentiability was derived under the condition that the exact or approximate
solution multifunctions satisfy some kind of compactness(see [2, 10, 14, 15]). In
this note, we derive a similar result under the condition that the approximate
solution multifunction is upper semi-continuous in the sense of Berge.

2 Upper Semi–Continuity

Given w ∈ W , define a multifunction Fw : W →→ X by

Fw(u) :=
{

F (w) if u = w
F (u) \ F (w) if u 6= w.

The upper semi-continuity of F in the sense of Berge is completely char-
acterized through the behavior of Fw (see Proposition 2.1 below). To see this
fact, we present the following two lemmas.

LEMMA 2.1 Assume F : W →→ X is upper semi-continuous at w. If (un) → w
with un 6= w, xn ∈ Fw(un) and (xn) → x, then we have x ∈ F (w).

Proof. Suppose x 6∈ F (w). Set B := {xn} ∪ {x}. Then B is a closed set and
B ∩ F (w) = ∅. If we set V := X \ B, then V is open with F (w) ⊂ V . By the
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upper semicontinuity of F , for sufficiently large n, we have xn ∈ V = X \ B a
contradiction. 2

LEMMA 2.2 Assume F : W →→ X is upper semi-continuous at w. Then for
all (un) → w with un 6= w and for all xn ∈ Fw(un), (xn) has an accumulation
point.

Proof. Let (un) → w, xn ∈ Fw(un). Set A := {xn}. Suppose A does not have
an accumulation point. Then for any x ∈ X, there exists a neighborhood U(x)
of x such that U(x) ∩ (A \ {x}) = ∅. Hence for each x ∈ X \ A, we have
U(x) ∩ A = ∅, i.e. U(x) ⊂ X \ A. This means X \ A is an open set. Set
V := X \ A. Clearly F (w) ⊂ V . By the upper semi-continuity of F , we have
xn ∈ F (un) ⊂ V = X \A for sufficiently large n. This leads to a contradiction.
Hence we get that A has an accumulation point. 2

PROPOSITION 2.1 F is upper semi-continuous at w if and only if Fw is
graphically upper semi-continuous at w.

Proof. (Only if) Suppose not. Then there exist an open set V with {w} ×
F (w) ⊂ V , (un) → w, and xn ∈ Fw(un) such that (un, xn) 6∈ V , which also
implies un 6= w. By Lemmas 2.1 and 2.2, we may assume (xn) → x ∈ F (w).
Since (un, xn) 6∈ V , we have (w, x) 6∈ V . This contradicts to {w} × F (w) ⊂ V .
(If) Suppose the contrary. Then there exist an open set V with F (w) ⊂ V ,
(un) → w, and xn ∈ F (un) such that xn 6∈ V , which also implies un 6= w. We
note that (un, xn) ∈ {un}×Fw(un). Since the multifunction u →→ {u}×Fw(u)
is upper semicontinuous at u = w, by Lemmas 2.1 and 2.2, (un, xn) has an
accumulation point (w, x) ∈ {w}×Fw(w) = {w}×F (w), which implies x ∈ V .
As X \ V is closed, we have x ∈ X \ V a contradiction. 2

REMARK 2.1 In the book of Bank et al, a result similar to Proposition 2.1
is indicated under the additional condition such that F (w) is closed (see [3,
Lemma 2.2.2]).

Now we can present the upper semi-continuity result of the marginal func-
tion with the aid of Theorem 1.1 and Proposition 2.1. It involves the following
condition:

(H) the function u → supx∈F (w) f(u, x) is upper semi-continuous at w.

THEOREM 2.1 Let F be upper semi-continuous at w and f be upper semi-
continuous at each point of {w}×F (w). If the condition (H) is satisfied, then
m is upper semi-continuous at w.
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Proof. Set m1 and m2 as follows.

m1(u) := sup
x∈Fw(u)

f(u, x),

m2(u) := sup
x∈F (u)∩F (w)

f(u, x).

By Theorem 1.1 and Proposition 2.1, m1 is upper semi-continuous at w. On
the other hand, by the assumption (H), we have

lim sup
u→w

m2(u) ≤ lim sup
u→w

sup
x∈F (w)

f(u, x) ≤ sup
x∈F (w)

f(w, x) = m2(w).

Since m(u) = max{m1(u),m2(u)}, we get the desired result. 2

One may think that the assumption (H) seems to be rather artificial. How-
ever, in the situations of classical cases, it is automatically satisfied (see Corol-
laries 2.1 and 2.2 below). The following example also illustrates the importance
of the assumption (H).

EXAMPLE 2.1 Let W = R+, X = R, and f(w, x) = wx. Define F : W →→ X
by

F (w) =

 [0, +∞) if w = 0

[0,
1

w
] if w 6= 0.

Clearly f is continuous and F is upper semi-continuous in the sense of Berge.
On the other hand, we get

m(w) =
{

0 if w = 0
1 if w 6= 0.

which is not upper semi-continuous at w = 0. Indeed, the assumption (H) is
not satisfied because

sup
x∈F (0)

f(u, x) =
{

0 if u = 0
+∞ if u > 0.

Now let us show that the preceding result encompasses two classical cases.

COROLLARY 2.1 (see [1, Theorem 1.4.16]) Let F be upper semi-continuous
at w and f be upper semi-continuous at each point of {w} × F (w). Assume
that F (w) is compact. Then m is upper semi-continuous at w.

Proof. It is known that a multifunction which takes constant compact value is
graphically upper semi-continuous. Thus (H) is satisfied. 2

For a given upper semi-continuous function f0 : X → R, define

m0(u) := sup
x∈F (u)

f0(x).
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COROLLARY 2.2 (see [3, Theorem 4.2.3]) Let F be upper semi-continuous at
w and f0 be upper semi-continuous at each point of {w} × F (w). Then m0 is
upper semi-continuous at w.

Proof. The function u → supx∈F (w) f0(x) is constant, hence upper semi-
continuous. 2

3 Directional Derivative

In this section, we treat a case in which the multifunction of the feasible
constraints F is constant: for some subset C of X one has F (w) = C for each
w ∈ W . Hence we have

m(w) = sup
x∈C

f(w, x).

Throughout the sequel, the parameter space W is assumed to be a normed
vector space.

3.1 Upper Derivative

Let us denote the upper derivatives of m and fx := f(·, x) by

m#(w, u) = lim sup
(t,v)→(0+,u)

t−1(m(w + tv) − m(w)),

f#
x (w, u) = lim sup

(t,v)→(0+,u)
t−1(f(w + tv, x) − f(w, x)).

Define the solution multifunction S and the approximate solution multifunc-
tion Sε for ε > 0 by

S(w) = {x ∈ C : f(w, x) = m(w)},
Sε(w) = {x ∈ C : f(w, x) ≥ min[m(w) − ε, 1/ε]}.

The following estimate is immediate [14, Lemma 3.1].

LEMMA 3.1 Suppose m(w0) is finite and S(w0) is nonempty. Then we have

sup{f#
x (w, u) : x ∈ S(w0)} ≤ m#(w, u).

To show the reverse inequality, we will use the results of the preceding
section. Given w0 for which m(w0) is finite, define q : R+ × W × C → R by

q(t, v, x) :=

{
t−1(f(w0 + tv, x) − f(w0, x)) if t 6= 0
f#

x (w0, v) if t = 0.

Define also q̄ : R+ × W → R by

q̄(t, v) := sup
x∈S(w0)

q(t, v, x).
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THEOREM 3.1 Let m(w0) be finite and S(w0) be nonempty. Assume that

(A1) q is upper semi-continuous at each point of {0} × {u} × S(w0),

(A2) for each ε > 0, the multifunction (t, v) ∈ R+ × W →→ Sεt(w0 + tv) is
upper semi-continuous at (0, u),

(A3) q̄ is upper semi-continuous at (0, u).

Then we have

m#(w0, u) = sup{f#
x (w0, u) : x ∈ S(w0)}.

Proof. We should treat two cases.
Case 1: For any δ > 0, there exist t ∈]0, δ[ and v ∈ B(u, δ) such that
m(w0 + tv) = +∞. In this case, m#(w0, u) = +∞ and there exist tn → 0+ and
vn → u such that m(w0 +tnvn) = +∞. Given ε > 0, take xn ∈ Sεtn(w0 +tnvn).
Then we have

tn
−1((εtn)−1 − m(w0)) ≤ tn

−1(f(w0 + tnvn, xn) − f(w0, xn))

≤ sup
x∈Sεtn (w0+tnvn)

q(tn, vn, x).

By Theorem 2.1, (t, v) → supx∈Sεt(w0+tv) q(t, v, x) is upper semi-continuous at
(0, u). If we take the upper limit of both sides, then we have,

+∞ ≤ lim sup
n→+∞

sup
x∈Sεtn (w0+tnvn)

q(tn, vn, x)

≤ sup
x∈S(w0)

q(0, u, x)

= sup
x∈S(w0)

f#
x (w0, u).

Case 2: There exists δ > 0 such that for any t ∈]0, δ[ and v ∈ B(u, δ),
m(w0 + tv) < +∞. In this case, for any ε > 0, we have

t−1(m(w0 + tv) − m(w0)) ≤ sup
x∈Sεt(w0+tv)

q(t, v, x) + ε.

By upper semi-continuity of (t, v) → supx∈Sεt(w0+tv) q(t, v, x), we have

m#(w0, u) ≤ sup
x∈S(w0)

f#
x (w0, u) + ε.

Since ε > 0 is arbitrary, we get the required result. 2

A result similar to Theorem 3.1 was given in many literatures [2, 5, 6, 7, 8,
9, 10, 11, 14, 15]. In these studies, one pose compactness condition on F (w0) or
sequentially compactness condition for the selection of F . (see, for example, [6,
14]). Our condition (A3) is a kind of tax to pay for the lack of compactness
on F . Indeed if we assume the compactness on F , we immediately get the
following corollary.

6



COROLLARY 3.1 Under the conditions of Theorem 3.1, we assume that S(w0)
is compact in place of (A3). Then

m#(w0, u) = sup{f#
x (w0, u) : x ∈ S(w0)}.

Proof. From (A1) and compactnes of S(w0), by Corollary 2.1, it is assured that
the marginal function q̄(t, v) := supx∈S(w0) q(t, v, x) is upper semi-continuous
at (0, u). Hence (A3) holds. 2

The condition (A1) is equivalent to the following condition (see [14]).

(A1′) f#
x (w0, u) = lim sup

(t,v,x′)→(0+,u,x)

t−1(f(w0+tv, x′)−f(w0, x
′)) for each x ∈ S(w0).

PROPOSITION 3.1 (A1) and (A1′) are equivalent.

Proof. It is clear that (A1) implies (A1′). Contrary, assume (A1′) holds.
Since for ε > 0,

sup
0≤t<ε

v∈B(u,ε)
x′∈B(x,ε)

q(t, v, x′) = max{ sup
v∈B(u,ε)
x′∈B(x,ε)

f#
x′ (w0, v), sup

0<t<ε
v∈B(u,ε)
x′∈B(x,ε)

t−1(f(w0+tv, x′)−f(w0, x
′))}

and
lim

ε→0+

sup
0<t<ε

v∈B(u,ε)
x′∈B(x,ε)

t−1(f(w0 + tv, x′) − f(w0, x
′))} = f#

x (w0, u),

it is enough to show (v, x′) → f#
x′ (w0, v) is upper semi-continuous at (u, x).

Take (un, xn) → (u, x) arbitrary. We first show the case in which f#
xn

(w0, un) =
+∞ for infinitely many n. In this case for each n, by definition of upper limit,
there exist tn > 0 and vn such that tn + d(un, vn) ≤ 1/n and

n ≤ tn
−1(f(w0 + tnvn, xn) − f(w0, xn)).

Upon taking upper limits of both sides, we derive

+∞ ≤ lim sup
n→+∞

tn
−1(f(w0 + tnvn, xn) − f(w0, xn))

≤ lim sup
(t,v,x′)→(0+,u,x)

t−1(f(w0 + tv, x′) − f(w0, x
′))

= f#
x (w0, u),

where the last equality is assured by (A1′).
Assume that f#

xn
(w0, un) = +∞ for at most finite n. Then, by definition of

upper limit, we can take tn > 0 and vn such that tn + d(un, vn) ≤ 1/n and

f#
xn

(w0, un) − 1/n ≤ tn
−1(f(w0 + tnvn, xn) − f(w0, xn)).
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Upon taking upper limits of both sides, we derive

lim sup
n→+∞

f#
xn

(w0, un) ≤ lim sup
n→+∞

tn
−1(f(w0 + tnvn, xn) − f(w0, xn))

≤ lim sup
(t,v,x′)→(0+,u,x)

t−1(f(w0 + tv, x′) − f(w0, x
′))

= f#
x (w0, u).

This completes the proof. 2

3.2 Radial Derivative

In this part, we treat the (upper) radial derivative of m and fx defined as :

m′
r(w, u) = lim sup

t→0+

t−1(m(w + tu) − m(w)),

f ′
x(w, u) = lim sup

t→0+

t−1(f(w + tu, x) − f(w, x)).

We will give the counter part of Theorem 3.1 for the estimation of m′
r(w, u).

Given w0 for which m(w0) is finite, define qr : R+ × C → R by

qr(t, x) :=

{
t−1(f(w0 + tu, x) − f(w0, x)) if t 6= 0
f ′

x(w0, u) if t = 0.

Define also q̄r : R+ → R by

q̄r(t) := sup
x∈S(w0)

qr(t, x).

The following result is proven in the same manner as Theorem 3.1.

THEOREM 3.2 Let m(w0) be finite and S(w0) be nonempty. Assume that

(B1) qr is upper semi-continuous at each point of {0} × S(w0),

(B2) for each ε > 0, the multifunction t ∈ R+
→→ Sεt(w0 + tu) is upper

semi-continuous at 0,

(B3) q̄r is upper semi-continuous at 0.

Then we have
m′

r(w0, u) = sup{f ′
x(w0, u) : x ∈ S(w0)}.

The condition (B1) is equivalent to the following condition.

(B1′) f ′
x(w0, u) = lim sup

(t,x′)→(0+,x)

t−1(f(w0+tu, x′)−f(w0, x
′)) for each x ∈ S(w0).

The proof of the following proposition is as same as that of Proposition 3.1,
so we omit the proof.
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PROPOSITION 3.2 (B1) and (B1′) are equivalent.

When we work with radial derivatives, we can give rather natural condition
which assure (B1) and (B3) simultaneously.

DEFINITION 3.1 ([9, 10]) f is said to be equi-differentiable at w0 in the di-
rection u provided that there exist η > 0 and ε : R+ \ {0} → R+ with
limt→0 ε(t) = 0 such that

|t−1(f(w0 + tu, x) − f(w0, x)) − f ′
x(w0, u)| ≤ ε(t), (1)

for all t > 0 and x ∈ Sη(w0).

REMARK 3.1 If f is equi-differentiable at w0 in the direction u, then the limit

lim
t→0+

t−1(f(w + tu, x) − f(w, x))

exists for each x ∈ Sη(w0) and equal to f ′
x(w0, u). The equi-differentiability

also asserts that the above limit converges uniformly in x ∈ Sη(w0).

PROPOSITION 3.3 Assume that f is equi-differentiable at w0 in the direction
u , then (B3) holds.

Proof. Since f is equi-differentiable, we get

qr(t, x) = t−1(f(w0 + tu, x) − f(w0, x))

≤ f ′
x(w0, u) + ε(t)

= qr(0, x) + ε(t).

for all t > 0 and x ∈ S(w0). By taking supremum in x ∈ S(w0), we have
q̄r(t) ≤ q̄r(0) + ε(t) for all t > 0. Hence we have

lim sup
t→0

q̄r(t) ≤ q̄r(0).

This completes the proof. 2

PROPOSITION 3.4 Let x → f(w, x) be continuous for each w ∈ W . Assume
that f is equi-differentiable at w0 in the direction u , then (B1) holds.

Proof. We first show that

lim
x′→x

f ′
x′(w0, u) = f ′

x(w0, u), (2)

holds for all x ∈ S(w0). Let x ∈ S(w0) be fixed. By the continuity of f , there
exists r > 0 such that B(x, r) ⊂ Sη(w0), where B(x, r) denotes the open ball
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centered at x with radius r. Given ε > 0, from (1), there exists δ > 0 such
that

|t−1(f(w0 + tu, x′) − f(w0, x
′)) − f ′

x′(w0, u)| ≤ ε,

for all t ∈]0, δ[ and x′ ∈ B(x, r). We note that δ does not depend on x′. Let
t0 ∈]0, δ[ be fixed. then, by the continuity of x → f(w, x), there exists ρ > 0
such that for all x′ ∈ B(x, ρ)

|(f(w0 + t0u, x′) − f(w0, x
′)) − (f(w0 + t0u, x) − f(w0, x))| ≤ εt0.

We may assume ρ ≤ r. Hence, if x′ ∈ B(x, ρ), we have

|f ′
x′(w0, u) − f ′

x(w0, u)|
≤ |t−1

0 (f(w0 + t0u, x′) − f(w0, x
′)) − f ′

x′(w0, u)|
+ |t−1

0 (f(w0 + t0u, x) − f(w0, x)) − f ′
x(w0, u)|

+ t−1
0 |(f(w0 + t0u, x′) − f(w0, x

′)) − (f(w0 + t0u, x) − f(w0, x))|
≤ 3ε.

Once we get (2), we can easily deduce that

lim sup
(t,x′)→(0+,x)

t−1(f(w0 + tu, x′) − f(w0, x
′))

≤ lim sup
(t,x′)→(0+,x)

(f ′
x′(w0, u) + ε(t))

= f ′
x(w0, u).

By Proposition 3.2, (B1) holds. 2

REMARK 3.2 If f is equi-differentiable, it is easily verified that

sup{f ′
x(w0, u) : x ∈ S(w0)} ≤ lim inf

t→0+
t−1(m(w + tu) − m(w)).

Hence we know the limit

lim
t→0+

t−1(m(w + tu) − m(w))

exists and equal to sup{f ′
x(w0, u) : x ∈ S(w0)}.
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